Macintosh, Windows®

Adobe Acrobat

Forms System Implementation Notes

Introduction

Acrobat Forms is a group of extensions added to Portable Document Format (PDF) in version 1.2, for

use with Acrobat software products. These extensions allow Acrobat users to create PDF forms that contain
fields and buttons. Users of Acrobat or Acrobat Reader software can complete and return PDF forms via
e-mail or the Web. PDF Forms features are simply a new layer of capabilities on top of a PDF file. The under-
lying PDF file may be created from any authoring application by any PDF producing tool within Acrobat
software such as PDF Writer, the Acrobat Distiller® application, or Acrobat Capture® software. Form fields

are subsequently added using Acrobat.

In addition to the forms data stored in PDF files, Acrobat products also support two formats for transmitting
forms data: the HTML form format (MIME type application/x-www-form-urlencoded), which transmits
data from the client to the server, and an Acrobat software-specific format called Forms Data Format,

or FDF (MIME type application/vnd.fdf), which transmits data between the client and the server.

This document provides an overview of the various architectures for Acrobat Forms applications.
It also compares HTML and FDF file formats for Acrobat Forms applications and helps you decide
when to use each one.

Prerequisites
To get the most from this document, you should be familiar with the following:

* The process of creating form fields and buttons, and modifying their properties. The Acrobat 4.0
online documentation covers these—in particular, the Forms Online Guide, accessible via the menu item
Help > Acrobat Guide.

* The process flow for HTML forms, on both the client and the server. Technical bookstores generally stock
many excellent books that cover this topic.

« To take full advantage of the capabilities of Acrobat Forms, you should be familiar with FDF.
FDF is described in an appendix of the Portable Document Format Reference Manual, which is available
at www.adobe.com/prodindex/acrobat/pubs.html.

Other sources of information
There is an Acrobat Forms Resources page at www.adobe.com/prodindex/acrobat/acrforms.html#formsres.

The FDF tool kit page is located at http://betal.adobe.com/ada/acrosdk/forms.html.

The basics

When users fill out an Acrobat form, they must click a button to submit the data from the form to the server.
This is called a submit form action. The format of the submitted data can be either HTML-compatible
(urlencoded) or FDF. This decision is made when the form is created. In the same dialog box in which you,
as the form’s creator, enter the URL to which the data is submitted you also specify which form format to use
to transmit the data.

Al

Adobe


http://www.adobe.com/prodindex/acrobat/pubs.html
http://www.adobe.com/prodindex/acrobat/acrforms.html#formsres
http://beta1.adobe.com/ada/acrosdk/forms.html

If you select HTML, the format is identical to and compatible with any existing HTML form. Existing
Common Gateway Interface (CGI) scripts for HTML forms may be used to parse data in this format.

If you select FDF, there is a server library to help parse and generate FDF files. The URL you
submit to is not restricted to the http scheme. It can also be the mailto scheme, for example,
mailto:someuser@somecompany.com.

Note: To see the format of the FDF data that is being sent to the server, create a form and enter data into
one or more of its fields. Instead of submitting this to the server, simply select the Export Form Data
menu item from the file menu of Acrobat Exchange.

Choosing the output format
This section describes how to choose between HTML and FDF formats when implementing an Acrobat
Forms application.

HTML support allows Acrobat forms to be used as a direct replacement for HTML forms. Choose HTML
if you need compatibility with existing systems.

FDF supports various capabilities that HTML does not. Choose FDF if you wish to take advantage
of its additional features, which include the following:

» When sending data back from the server, you do not need to re-send the form itself; the data can populate
the same form that originated the data.

* You can alter the appearance of the buttons. You can also take advantage of this capability to send graphical
information in either direction between the client and the server.

* You can alter the form by sending an FDF file from the server. You can re-program various actions attached
to buttons (including adding new JavaScripts, changing the URL for a submit form action, etc.). You can also
change field properties, such as hidden, read-only, required, and don’t print. And, you can populate list boxes
and combo boxes with different choices, etc.

* You can use FDF to dynamically synthesize PDF documents composed of a variable number of pages, from
templates found in PDF documents specified by the FDF data. You can also use FDF to populate any fields in
the spawned pages with data. A template is simply a page with a name attached and may be visible in its
source PDF document or hidden.

Replacing an HTML form with an Acrobat form
Figure 1 shows the simplest case, which permits existing CGI applications to be used without modification.
To use Acrobat Forms in such a system, you simply create:

1. An Acrobat form with field names that match those in the existing HTML form.

2. A button on the form whose action is a submit form action. The URL to submit to may be relative to the
URL of the form that you are submitting from.
Figure 1: Using HTML with Acrobat Forms

Web
browser

urlencoded data
sent to server

Acrobat
form

Web CGl
server application

<
=~

browser

New HTML document

HTML returned from server

form




Acrobat form with results returned in the same form

Figure 2 shows a system in which the form data is returned into the same form as that from which it was
submitted. In such a system, the data sent to the server may be either FDF or urlencoded format, while the
data returned from the server must be in FDF format and must have a MIME type of application/vnd.fdf.

Note: When the server returns data in FDF, the URL to submit to must end in #FDF. For example,
http://yourserver.com/cgi-bin/yourscript#FDF

Existing CGI applications must be modified to return FDF instead of HTML documents. Example 1 shows
a simple FDF-generating Active Server Page (ASP) that works with the Microsoft® Internet Information
Server 3.0. For anything more complicated than this example, the use of the FDF tool kit is highly recom-
mended. See “Other sources of information” on page 1.

Note: If you return a static FDF file stored on the server, as opposed to one dynamically generated
by a server script as in the example below, then you may have to define application/vnd.fdf as a new
MIME type on your server.

Figure 2: Returning FDF into the same form

urlencoded
or FDF data
Web sent to server
>
browser
Web CGl
server application
Acrobat
form
FDF data
returned

from server

Example 1: Simple ASP for generating FDF data
<%@ LANGUAGE = VBScript%>
<% Response.ContentType = "application/vnd.fdf" %> %FDF-1.2

10o0bj

<<

/FDF << [fields [

<< /T (status)/V (Hello, World!) >>
1>>

>>

endobj
trailer
<<

/Root10R
>>

%%EOF

Acrobat form with results returned in a new form

In some cases, you may wish to return data in a different form, not the form from which it was submitted.
Figure 3 shows such a case. The modified CGI application needed to implement such an application is almost
identical to that needed for the system described in the previous section. The only difference is that you must
include an /F key in the FDF file when you want to populate a different form. The value of the /F key specifies
the URL for the PDF file to populate with the forms data. This URL may be relative to the URL of the form

that you are submitting from.The specified file is retrieved (from the server) and populated with the forms data.

Note: If the returned FDF data is for the same form that you submitted from, it should not include the /F key.

The data sent to the server may be either FDF or urlencoded. The data returned from the server must be in
FDF and have a MIME type of application/vnd.fdf.



Figure 3: Returning FDF into a different form

Web
browser

FDF or
urlencoded data

Acrobat
form1

FDF data Web CaGl
(with /F key) server application
sent from
server
Web
browser

PDF file
requested
from server

Acrobat
form1

Web
server
Web
browser
Acrobat
Acrobat form2
form 2

HTML form with results returned in an Acrobat form

An additional possibility is starting from an HTML form, submitting to the server, and having the server
return an FDF file whose /F key gives as value the absolute URL of an Acrobat form. The specified form is
retrieved (from the server) and populated with the Acrobat Forms data. Figure 4 shows such a system.

Note: For this to work, you must select Acrobat as the application that handles the MIME type applica-
tion/vnd.fdf. For example, if you are using Netscape (e.g., Communicator 4.x), then you do this under
Preferences > Applications. Choose Acrobat as the “helper” application. If you are using Internet Ex-
plorer on the Microsoft Windows platform, open Windows Explorer, choose the menu item View >
Options > file Types, and make sure there is an entry for Adobe Acrobat Forms Document that has the
Default Extension for Content Type: set to FDF and the Content Type (MIME): set to “application/
vnd.fdf.” Additionally, the checkbox “Confirm open after download” should be unchecked. Finally, un-
der “Actions:” there should be an entry for “open,” and in its properties, “Application used to perform
action” should be set to C:\Program Files\Adobe\Acrobat 4.0\Acrobat\Acrobat.exe (or wherever Acrobat
resides), and the checkbox “Use DDE” should be unchecked. It also is imperative that from within
Acrobat you go to the file > Preferences > Weblink menu item and choose your browser. (Note that if
you are using Acrobat 4.0, these configurations were likely made for you when you installed Acrobat 4.0.)

Note: To return FDF data from an HTML form, the URL to submit to does not need to end in #FDF, unlike
the cases described earlier in “Acrobat form with results returned in the same form” on page 3 and “Acrobat
form with results returned in a new form” on page 3.

Note: In Microsoft Internet Explorer, the PDF file will open in a new browser window from the one
displaying the HTML that the submission was triggered from (this has been fixed in Acrobat 4.0).

In Netscape Communicator 4.x, the PDF file opens in the same window, and even in the same frame
(if frames are being used).



Figure 4: Start from HTML, end in an Acrobat form

Web
browser

HTML
form

Web
browser

HTML
form

Acrobat

Web
browser

HTML
form

Web
browser

Acrobat
form

A

Acrobat

urlencoded data

Web
server

CGI
application

FDF data (with /F key)
sent from server

FDF data given to Acrobat
as the “helper”application for
MIME type application/vnd.fdf

Acrobat uses WebLink to request
the Acrobat form indicated
by the /F key in the received FDF

PDF requested
from server

Web
server

Acrobat form

FDF data loaded
into Acrobat form




Templates

A recent addition to Acrobat Forms is the ability to dynamically create PDF documents composed of a vari-
able number of pages, from templates found in PDF documents specified by the FDF, and to populate any
fields in the “spawned” pages with data carried by that FDF. Figure 5 shows such a system.

Figure 5: Dynamic creation of a PDF file from templates

Web
browser
FDF or
urlencoded data
Acrobat
form 1
FDF data
carrying Web CGI
template server application
information
Web
browser
PDF files containing
templates requested
Acrobat from server
form1 \
\ .
server
Web
browser
New
PDF New document is assembled
from PDF files returned by server.
Fields (if any) are populated.

Adobe Systems Incorporated
345 Park Avenue
San Jose, CA 95110-2704 USA

Adobe Systems Pty. Ltd.
Level 4,67 Albert Avenue
Chatswood, NSW 2067
Australia

Adobe Systems Europe Limited
Adobe House, Mid New Cultins
Edinburgh EH114DU

Scotland, United Kingdom
Adobe Systems Co., Ltd.
Yebisu Garden Place Tower
4-20-3 Ebisu, Shibuya-ku
Tokyo 150-6017 Japan

World Wide Web
www.adobe.com

This brochure was created with Adobe PageMaker® software and font software from the Adobe Type Library.

Adobe, the Adobe logo, Acrobat, Acrobat Capture, Acrobat Exchange, Distiller,and PageMaker are trademarks of Adobe Systems Incorporated. Microsoft and Windows are either
trademarks or registered trademarks of the Microsoft Corporation in the United States and other countries. Macintosh is a trademark of Apple Computer, Inc. registered in the
United States and other countries. Netscape and Netscape Communicator are trademarks of Netscape Communications Corporation. All other trademarks of the property of their
respective owners.

© 1999 Adobe Systems Incorporated. All rights reserved. Printed in the USA.BC1317 1/99

The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Adobe Systems
Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies that may appear in this document. The software described in this
document is furnished under license and may only be used or copied in accordance with the terms of such license.

Version History: Original version April 8,1997. Updated April 30,1998



